. .
Deutsch
Österreich
Anmelden
Tipp von eurobuch.at
Ähnliche Bücher
Weitere, andere Bücher, die diesem Buch sehr ähnlich sein könnten:
Suchtools
Buchtipps
Aktuelles
Werbung
FILTER
- 0 Ergebnisse
Kleinster Preis: 37,41 €, größter Preis: 38,21 €, Mittelwert: 37,96 €
Wie oft können sich empirische Lorenzkurven schneiden? - Frank Scherer
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Frank Scherer:
Wie oft können sich empirische Lorenzkurven schneiden? - neues Buch

ISBN: 9783832406134

ID: 689392869

Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der Streckenzug verläuft zwischen den Punkten (0,0) und (1,1). Die Stützstellen der Lorenzkurve werden mit Hilfe der Merkmalsausprägungen und den zugehörigen Häufigkeiten der gegebenen Beobachtungsreihen berechnet. Gang der Untersuchung: Diese Arbeit untersucht, wie oft sich zwei Lorenzkurven schneiden können. Praktische Relevanz erhält dieses Thema durch die Versuche, Lorenzkurven bezüglich geeigneter Halbordnungen anzuordnen. Schwerpunkt der Arbeit ist es, die Schnittpunktzahl nach oben abzuschätzen. Ich unterscheide hierbei den Fall, dass die Graphen gleich viele Strecken besitzen von dem Fall beliebiger Lorenzkurven. Die vorgeschlagenen Grenzen sind scharf, wie Beispiele zeigen. Abschliessend wird die Schnittpunktzahl der Lorenzkurven für einige empirische Daten ermittelt und diese in Beziehung zur Zahl der Schnittpunkte empirischer Verteilungsfunktionen gesetzt. In Kapitel 2 werden dem Leser Notation und Begriffe bezüglich Lorenzkurven nahegebracht. Kapitel 3 untersucht, wann und wie die Zahl der Schnittpunkte zweier Lorenzkurven nach unten und oben abschätzbar ist. In Kapitel 4 werden Lorenzkurven mit maximal möglicher, endlicher Schnittpunktzahl konstruiert. In Kapitel 5 wird die Zahl von Schnittpunkten bei Lorenzkurven aus empirischen Daten ermittelt. Als Datenmaterial dienen Brutto-Einkommensverteilungen der Bundesrepublik Deutschland bis 1989, die Verteilung der Waldfläche auf Betriebe in einigen Bundesländern 1993 und die Verteilung landwirtschaftlicher Nutzfläche auf landwirtschaftliche Betriebe Gesamtdeutschlands 1994. Ob die Schnittpunktzahl zweier empirischer Verteilungsfunktionen die Zahl der gemeinsamen Punkte der Lorenzkurven beeinflusst, wird in Kapitel 6 untersucht. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung5 2.Einführung in Lorenzkurven6 3.Schnittpunktzahl von Lorenzkurven8 3.1Grenzen für beliebige Lorenzkurven8 3.2Grenzen für Lorenzkurven gleicher Streckenzahl10 4.Beispiele12 4.1Beispiel mit gleicher Streckenzahl12 4.2Beispiel mit ungleicher Streckenzahl21 5.Vergleich von Lorenzkurven aus der Praxis28 6.Verteilungsfunktionen und [] Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der ... eBooks > Fachbücher > Mathematik PDF 14.01.1998 eBook, Diplom.de, .199

Neues Buch Buch.ch
No. 37257066 Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Wie oft können sich empirische Lorenzkurven schneiden? - Frank Scherer
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Frank Scherer:
Wie oft können sich empirische Lorenzkurven schneiden? - neues Buch

ISBN: 9783832406134

ID: 126001712

Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der Streckenzug verläuft zwischen den Punkten (0,0) und (1,1). Die Stützstellen der Lorenzkurve werden mit Hilfe der Merkmalsausprägungen und den zugehörigen Häufigkeiten der gegebenen Beobachtungsreihen berechnet. Gang der Untersuchung: Diese Arbeit untersucht, wie oft sich zwei Lorenzkurven schneiden können. Praktische Relevanz erhält dieses Thema durch die Versuche, Lorenzkurven bezüglich geeigneter Halbordnungen anzuordnen. Schwerpunkt der Arbeit ist es, die Schnittpunktzahl nach oben abzuschätzen. Ich unterscheide hierbei den Fall, dass die Graphen gleich viele Strecken besitzen von dem Fall beliebiger Lorenzkurven. Die vorgeschlagenen Grenzen sind scharf, wie Beispiele zeigen. Abschliessend wird die Schnittpunktzahl der Lorenzkurven für einige empirische Daten ermittelt und diese in Beziehung zur Zahl der Schnittpunkte empirischer Verteilungsfunktionen gesetzt. In Kapitel 2 werden dem Leser Notation und Begriffe bezüglich Lorenzkurven nahegebracht. Kapitel 3 untersucht, wann und wie die Zahl der Schnittpunkte zweier Lorenzkurven nach unten und oben abschätzbar ist. In Kapitel 4 werden Lorenzkurven mit maximal möglicher, endlicher Schnittpunktzahl konstruiert. In Kapitel 5 wird die Zahl von Schnittpunkten bei Lorenzkurven aus empirischen Daten ermittelt. Als Datenmaterial dienen Brutto-Einkommensverteilungen der Bundesrepublik Deutschland bis 1989, die Verteilung der Waldfläche auf Betriebe in einigen Bundesländern 1993 und die Verteilung landwirtschaftlicher Nutzfläche auf landwirtschaftliche Betriebe Gesamtdeutschlands 1994. Ob die Schnittpunktzahl zweier empirischer Verteilungsfunktionen die Zahl der gemeinsamen Punkte der Lorenzkurven beeinflusst, wird in Kapitel 6 untersucht. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung5 2.Einführung in Lorenzkurven6 3.Schnittpunktzahl von Lorenzkurven8 3.1Grenzen für beliebige Lorenzkurven8 3.2Grenzen für Lorenzkurven gleicher Streckenzahl10 4.Beispiele12 4.1Beispiel mit gleicher Streckenzahl12 4.2Beispiel mit ungleicher Streckenzahl21 5.Vergleich von Lorenzkurven aus der Praxis28 6.Verteilungsfunktionen und [] Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der ... eBook eBooks>Fachbücher>Mathematik, Diplom.de

Neues Buch Thalia.ch
No. 37257066 Versandkosten:AT (EUR 13.08)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Wie oft können sich empirische Lorenzkurven schneiden? - Frank Scherer
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Frank Scherer:
Wie oft können sich empirische Lorenzkurven schneiden? - neues Buch

ISBN: 9783832406134

ID: 27d0ea0b339f921fa5a6312772e6215d

Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der ... Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der Streckenzug verläuft zwischen den Punkten (0,0) und (1,1). Die Stützstellen der Lorenzkurve werden mit Hilfe der Merkmalsausprägungen und den zugehörigen Häufigkeiten der gegebenen Beobachtungsreihen berechnet. Gang der Untersuchung: Diese Arbeit untersucht, wie oft sich zwei Lorenzkurven schneiden können. Praktische Relevanz erhält dieses Thema durch die Versuche, Lorenzkurven bezüglich geeigneter Halbordnungen anzuordnen. Schwerpunkt der Arbeit ist es, die Schnittpunktzahl nach oben abzuschätzen. Ich unterscheide hierbei den Fall, dass die Graphen gleich viele Strecken besitzen von dem Fall beliebiger Lorenzkurven. Die vorgeschlagenen Grenzen sind scharf, wie Beispiele zeigen. Abschließend wird die Schnittpunktzahl der Lorenzkurven für einige empirische Daten ermittelt und diese in Beziehung zur Zahl der Schnittpunkte empirischer Verteilungsfunktionen gesetzt. In Kapitel 2 werden dem Leser Notation und Begriffe bezüglich Lorenzkurven nahegebracht. Kapitel 3 untersucht, wann und wie die Zahl der Schnittpunkte zweier Lorenzkurven nach unten und oben abschätzbar ist. In Kapitel 4 werden Lorenzkurven mit maximal möglicher, endlicher Schnittpunktzahl konstruiert. In Kapitel 5 wird die Zahl von Schnittpunkten bei Lorenzkurven aus empirischen Daten ermittelt. Als Datenmaterial dienen Brutto-Einkommensverteilungen der Bundesrepublik Deutschland bis 1989, die Verteilung der Waldfläche auf Betriebe in einigen Bundesländern 1993 und die Verteilung landwirtschaftlicher Nutzfläche auf landwirtschaftliche Betriebe Gesamtdeutschlands 1994. Ob die Schnittpunktzahl zweier empirischer Verteilungsfunktionen die Zahl der gemeinsamen Punkte der Lorenzkurven beeinflusst, wird in Kapitel 6 untersucht. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung5 2.Einführung in Lorenzkurven6 3.Schnittpunktzahl von Lorenzkurven8 3.1Grenzen für beliebige Lorenzkurven8 3.2Grenzen für Lorenzkurven gleicher Streckenzahl10 4.Beispiele12 4.1Beispiel mit gleicher Streckenzahl12 4.2Beispiel mit ungleicher Streckenzahl21 5.Vergleich von Lorenzkurven aus der Praxis28 6.Verteilungsfunktionen und [] eBooks / Fachbücher / Mathematik, Diplom.de

Neues Buch Buch.de
Nr. 37257066 Versandkosten:Bücher und alle Bestellungen die ein Buch enthalten sind versandkostenfrei, sonstige Bestellungen innerhalb Deutschland EUR 3,-, ab EUR 20,- kostenlos, Bürobedarf EUR 4,50, kostenlos ab EUR 45,-, Sofort per Download lieferbar, DE. (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Wie oft können sich empirische Lorenzkurven schneiden? - Frank Scherer
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Frank Scherer:
Wie oft können sich empirische Lorenzkurven schneiden? - neues Buch

ISBN: 9783832406134

ID: 689392869

Inhaltsangabe:Einleitung: Die empirische Lorenzkurve - kurz: Lorenzkurve - ist in den Wirtschafts- und Sozialwissenschaften gebräuchlich. Sie stellt graphisch dar, wie sich die Merkmalssumme eines metrischen Merkmals auf die Merkmalsträger aufteilt. Sie ist ein Polygonzug durch den mehrere Punkte im zweidimensionalen Raum verbunden werden. Der Streckenzug verläuft zwischen den Punkten (0,0) und (1,1). Die Stützstellen der Lorenzkurve werden mit Hilfe der Merkmalsausprägungen und den zugehörigen Häufigkeiten der gegebenen Beobachtungsreihen berechnet. Gang der Untersuchung: Diese Arbeit untersucht, wie oft sich zwei Lorenzkurven schneiden können. Praktische Relevanz erhält dieses Thema durch die Versuche, Lorenzkurven bezüglich geeigneter Halbordnungen anzuordnen. Schwerpunkt der Arbeit ist es, die Schnittpunktzahl nach oben abzuschätzen. Ich unterscheide hierbei den Fall, dass die Graphen gleich viele Strecken besitzen von dem Fall beliebiger Lorenzkurven. Die vorgeschlagenen Grenzen sind scharf, wie Beispiele zeigen. Abschliessend wird die Schnittpunktzahl der Lorenzkurven für einige empirische Daten ermittelt und diese in Beziehung zur Zahl der Schnittpunkte empirischer Verteilungsfunktionen gesetzt. In Kapitel 2 werden dem Leser Notation und Begriffe bezüglich Lorenzkurven nahegebracht. Kapitel 3 untersucht, wann und wie die Zahl der Schnittpunkte zweier Lorenzkurven nach unten und oben abschätzbar ist. In Kapitel 4 werden Lorenzkurven mit maximal möglicher, endlicher Schnittpunktzahl konstruiert. In Kapitel 5 wird die Zahl von Schnittpunkten bei Lorenzkurven aus empirischen Daten ermittelt. Als Datenmaterial dienen Brutto-Einkommensverteilungen der Bundesrepublik Deutschland bis 1989, die Verteilung der Waldfläche auf Betriebe in einigen Bundesländern 1993 und die Verteilung landwirtschaftlicher Nutzfläche auf landwirtschaftliche Betriebe Gesamtdeutschlands 1994. Ob die Schnittpunktzahl zweier empirischer Verteilungsfunktionen die Zahl der gemeinsamen Punkte der Lorenzkurven beeinflusst, wird in Kapitel 6 untersucht. Inhaltsverzeichnis:Inhaltsverzeichnis: 1.Einleitung5 2.Einführung in Lorenzkurven6 3.Schnittpunktzahl von Lorenzkurven8 3.1Grenzen für beliebige Lorenzkurven8 3.2Grenzen für Lorenzkurven gleicher Streckenzahl10 4.Beispiele12 4.1Beispiel mit gleicher Streckenzahl12 4.2Beispiel mit ungleicher Streckenzahl21 5.Vergleich von Lorenzkurven aus der Praxis28 6.Verteilungsfunktionen und Lorenzkurven31 7.Zusammenfassung36 8.Literaturverzeichnis37 9.Quellenverzeichnis38 Anhang+Tabellen39 Wie oft können sich empirische Lorenzkurven schneiden? eBooks > Fachbücher > Mathematik PDF 14.01.1998, Diplom.de, .199

Neues Buch Buch.ch
No. 37257066 Versandkosten:zzgl. Versandkosten
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.
Wie oft können sich empirische Lorenzkurven schneiden? als eBook Download von Frank Scherer - Frank Scherer
Vergriffenes Buch, derzeit bei uns nicht verfügbar.
(*)
Frank Scherer:
Wie oft können sich empirische Lorenzkurven schneiden? als eBook Download von Frank Scherer - neues Buch

ISBN: 9783832406134

ID: 653245571

Wie oft können sich empirische Lorenzkurven schneiden?: Frank Scherer Wie oft können sich empirische Lorenzkurven schneiden?: Frank Scherer eBooks > Fachthemen & Wissenschaft > Mathematik, Diplom.de

Neues Buch Hugendubel.de
No. 21623936 Versandkosten:, , DE (EUR 0.00)
Details...
(*) Derzeit vergriffen bedeutet, dass dieser Titel momentan auf keiner der angeschlossenen Plattform verfügbar ist.